PROMPT GOVERNOR

How to Control Al Output Without Surrendering Judgment

A Practical Playbook for Professionals

By Leonardo Pasqualin

Contents

Who This Playbook Is For — And Who It Is Not
Introduction
Chapter 1: Why Prompting Matters
Chapter 2: What an LLM Actualy Is
Chapter 3: Prompting |s Programming
Chapter 4: The Five Pillars of Effective Prompting
Chapter 5: The Universal Prompt Template
Chapter 6: Iterative Prompting
Chapter 7: High-Leverage Prompt Patterns
Chapter 8: Common Failure Modes
Chapter 9: Reducing Errors and Hallucinations
Chapter 10: Why Agents Fail Without Prompt Discipline
Chapter 11: You Are the Governor, Not the Al
Chapter 12: How to Apply This Playbook
Last Words
Appendix A: The Governor's Checklist
* A One-Page Control System
Appendix B: Prompt Failure Diagnostic Sheet
* A One-Page Failure Diagnosis Tool
Appendix C: Automation Readiness Gate
» A Hard Stop Before Autonomy
Appendix D: Universal Prompt Template (Printable)
* A Canonical Prompt Specification Template

Who This Playbook IsFor — And Who It Is
Not

This playbook is written for people who use Al in real work and care about outcomes.

It assumes you are not experimenting for novelty, entertainment, or hype. You are producing things that
matter—documents, decisions, communications, analyses, or systems that other people rely on.

If that describes you, this book is meant to raise your standard.

This Playbook IsFor You If:

* You use Al regularly in professional or operational contexts

* You areresponsible for the accuracy, quality, or consequences of Al-assisted work

* You aretired of confident nonsense and output that sounds right but isn't trustworthy
* You want predictable, reviewable results—not clever surprises

* You are building workflows, processes, or agents and need control, not vibes

* Y ou understand that delegation does not remove accountability

This playbook is especialy relevant if you are an operator, manager, consultant, engineer, analyst, or
decision-maker who cannot afford silent failure.

This Playbook IsNot For You If:

* You are looking for viral prompt tricks or clever phrasing hacks

* You want the "best prompt” for the current model of the month
 You expect Al to replace judgment instead of supporting it

« You are uncomfortable taking responsibility for Al-assisted output
« Y ou want automation without specification

* You believe "the Al said so" is an acceptable explanation

Thisisnot a guide to sounding smarter, faster, or more creative. It is a guide to staying in control.

A Note on Expectations
This book will not make Al reliable. No prompt can do that.

What it will do is make unreliability visible, bounded, and governable. It will help you specify clearly, diagnose
failures quickly, and decide when automation is appropriate—and when it is not.

If you are willing to retain judgment, apply discipline, and own outcomes, this playbook will give you leverage.
If you are looking to offload responsibility, it will feel restrictive.

The Prompt Governor

That reaction is the point.

The Prompt Gover nor

| ntroduction

THIS BOOK IS ABOUT CONTROL

Thisis not abook about "prompt tricks." It's a book about control. If you use Al occasionally, this
book will make you more consistent. If you use Al daily, this book will keep you out of trouble. If
you're building workflows or agents, this book is the difference between leverage and silent
failure.

This playbook is for people who already use Al in real work and are tired of inconsistent results, confident
nonsense, and output they can't quite trust. It assumes you care about correctness, responsibility, and
outcomes—not novelty.

Thisis not aguide to getting Al to "sound smarter." It won't teach you clever phrasing or viral prompt hacks. It
won't tell you which model is best this month. Those things change too fast to matter.

What doesn't change is this: probabilistic systems require structure. If you don't specify clearly, the system will
guess. And if you automate guessing, you automate risk.

Everything in this book treats prompts as specifications, not conversations. You'll learn how to define intent,
constrain behavior, surface uncertainty, and retain authority—whether you're writing a single email or
orchestrating an agentic workflow.

HOW TO USE THIS BOOK

Read it once end to end. Then keep it open while you work. Apply the framework to real tasks, not
examples. When output fails, diagnose the spec instead of blaming the model.

If you want Al to think for you, this book isn't for you.

If you want Al to work for you—without surrendering judgment—Kkeep reading.

The Prompt Governor

Chapter 1. Why Prompting Matters

Most people blame the Al when they get bad results. They assume the model isn't smart enough, or they need a
better subscription, or the technology just isn't there yet. In reality, the problem is amost always the input.

A $20/month ChatGPT subscription and a free Claude account will both produce garbage if you give them
vague instructions. The model matters far less than people think. Prompting is the only variable you actually
control.

THE CORE TRUTH

Better prompts equal better results. A mediocre model with agreat prompt will beat afrontier
model with alazy prompt amost every time.

Here's the difference in practice:

m Vague O Specific

Wite me a marketing enail Wite a 150-word enmail to | apsed
custoners of a B2B SaaS product,
tone: direct and slightly urgent,
goal : get themto book a 15-m nute
call, include one specific pain
poi nt about manual data entry.

The difference between those two prompts is about 30 seconds of thinking. The difference in output quality is
€normous.

Prompting is a skill, not a personality trait. It can be learned, practiced, and systematized. The people getting
real value from Al aren't smarter than you. They've just learned to specify what they actually want.

The Real Failure Mode

The most dangerous failure with Al is not bad output. It's misplaced authority.

People don't just want Al to draft faster—they want relief from judgment. Confident-sounding output feels like
competence, and that confidence tempts users to stop questioning, stop verifying, and stop owning the result.

LLMs do not understand truth, risk, or consequence. They generate plausible text, not accountable decisions.
When users treat Al output as authoritative instead of provisional, they quietly transfer judgment to a
probabilistic system that cannot bear it.

Prompt discipline exists to prevent thistransfer.

KEY TAKEAWAYS
* The model matters less than the prompt
 Prompting is the only variable you control
» 30 seconds of specification saves 30 minutes of revision
* This skill can be systematized and learned

The Prompt Gover nor

The Prompt Gover nor

Chapter 2: What an LLM Actually Is

An LLM predicts the next word—technically, the next token—based on patterns learned from massive amounts
of text. That's it. Everything else you see—the apparent knowledge, the conversational tone, the occasional
brilliance—emerges from that single mechanism.

CRITICAL UNDERSTANDING

LLMsdo not "know things." They have learned statistical associations between words.
Confidence comes from probability, not from verification. A plausible-sounding wrong answer
and a correct answer feel exactly the same to the model.

Thisiswhy LLMs confidently generate bullshit. The model has no access to real-time information unless you
explicitly connect it to tools. It has no way to check its own answers. It has no concept of "true" versus
"false"—only "probable" versus "improbable.”

PRACTICAL IMPLICATIONS

Every LLM output should be treated as a draft, not afact. Verification is your job. The model
performs best when you give it clear patterns to follow; vague inputs leave room for
plausible-but-wrong compl etions.

LLMsare excellent at transformation, summarization, and generation within constraints. They are unreliable for
factual recall, especially for obscure or recent information. Once you understand this, you stop being surprised
by failures and start designing prompts that play to the model's strengths.

KEY TAKEAWAYS
* LLMs predict probable text, not true text
* Confidence # Correctness
* Treat all output as drafts requiring verification

* Play to strengths: transformation, generation within constraints

The Prompt Gover nor

Chapter 3: Prompting |I's Programming

When you write a prompt, you're not "talking to Al." Y ou're writing a program in natural language.

CorePrinciple: A Prompt Isa Specification

A prompt defines behavior. It constrains action. It determines outputs. That makes it a specification.
Thisisnot a metaphor. It is operationally true.

A good prompt does the same job a good spec does in software, operations, or law: it removes ambiguity. A bad
prompt does what a bad spec aways does—it leaves gaps that get filled by assumptions. In probabilistic
systems, assumptions are not harmless. They are risk.

A prompt has:

* Inputs (context, constraints, examples)
* Processing logic (the model's pattern matching)
* Outputs (the generated text or action)

That is a program, whether you acknowledge it or not.

m Vague O Specific

Sunmari ze this article Sunmari ze this article in 3 bullet
points for a busy executive who
cares about revenue inpact.

Good programmers don't write code and hope it works. They define inputs, expected outputs, and edge cases.
Good prompters do the same.

THE MENTAL SHIFT

Stop asking, "What do | want to say to the Al?" Start asking, "What specification would produce
the output | need?"

This reframing makes prompting:

* [terable — your first prompt is a hypothesis, not a solution
» Reusable — effective structures become templates
» Debuggable — failures can be traced back to missing constraints

The Prompt Gover nor

KEY TAKEAWAYS
* Prompts are specifications, not conversations
* Treat prompt writing like programming
* |terate, template, and debug your prompts

* VVague specs produce unpredictable results

The Prompt Gover nor

Chapter 4: The Five Pillars of Effective
Prompting

Most prompits fail silently. The Al gives you something—it just isn't what you needed. That happens because
the model filled in gaps you didn't know you left. The Five Pillars exist to eliminate guessing. Each pillar
controls a specific failure mode.

ROLE CONTEXT TASK OUTPUT GUARDRAILS

Who is the Al? What background? What to do? What format? What limits?

Pillar 1: ROLE

Controls the model's operational mode—what expertise, perspective, and behaviora constraints it adopts.
Without it, the model defaultsto "helpful generalist assistant,” producing generic, safe, bland output.

m Vague O Specific
Revi ew this contract clause You are an in-house counsel at a

SaaS conpany. Review this contract
clause for liability exposure.

Pillar 2: CONTEXT

Defines the relevant background information the model needs to do the task correctly. Without it, the model
makes assumptions that may be wrong, outdated, or irrelevant to your situation.

Pillar 3: TASK

Specifies the executable action the model should take—what "done" looks like. Without it, the model produces
vague, hedge-filled, or incomplete output.

m Vague [0 Specific

Help me with nmy presentation Wite 5 slide titles and one bull et
point per slide for a 10-minute
i nvestor update. Focus on @
revenue growt h and product roadnap.

The Prompt Gover nor

Pillar 4: OUTPUT SHAPE

Controls format, structure, length, and level of detail. Without it, the model defaults to verbose, essay-style
prose. Y ou get walls of text when you needed atable.

m Vague O Specific
Expl ain the pros and cons of renote List 3 pros and 3 cons of renote
wor k work for a 50-person startup. Use
bul l et points. Max 15 words per
bul et .

Pillar 5: GUARDRAILS

Defines what the model should NOT do—constraints, exclusions, verification regquirements, and conditions for
refusal. Without them, the model overreaches, hallucinates, or includes things you explicitly don't want.

m Vague O Specific

Summari ze this research paper Sunmari ze this research paper. Do
not include information not present
in the paper. If the nethodology is
uncl ear, say so rather than
guessing. Do not editorialize.

DIAGNOSTIC CHECKLIST

When output fails, ask which pillar you underspecified. The pillars work as a system—a prompt
with great ROLE but no GUARDRAILS will still produce hallucinations.

The Prompt Gover nor

Chapter 5: The Universal Prompt Template

Most prompting failures aren't caused by bad wording. They're caused by missing components. The Universal
Prompt Template exists to prevent omission. It maps directly to the Five Pillars and works because it forces you
to specify the things the model would otherwise guess.

Thisis not a clever framework. It's a checklist.

THE UNIVERSAL PROMPT TEMPLATE

ROLE:

You are [specific role].

You prioritize [key characteristics].
You are NOT [what to avoid].

CONTEXT:

[Only the background information required for correct execution.]

TASK:

[The precise, executable objective. Define what "done" neans.]

OUTPUT:

[Exact format, structure, length, and |level of detail.]

GUARDRAI LS:

[What the nodel nust not do. Constraints, exclusions, verification
rules.]

Why Each Section Exists

ROLE

Controls the model's operating mode. Without it, the model defaults to a generic assistant. Define what the
model is AND what it is not.

CONTEXT

Supplies only the information required for correct execution. Missing context forces assumptions. Excess
context dilutes focus.

TASK

The Prompt Gover nor

The most critical section. If you can't state the task clearly enough to hand it to a competent human, you're not
ready to prompt.

OUTPUT

Prevents the model from choosing structure for you. "Three bullet points, max 20 words each" beats "keep it
brief."

GUARDRAILS

Your safety system. This is where you constrain invention, surface uncertainty, and prevent overreach. If
accuracy matters, this section is not optional.

How to Use It

Thistemplate is adaptable, not rigid. For quick tasks, compress sections. For complex or high-risk tasks, expand
them. Do not skip sections unless you understand the tradeoff.

Templates don't make prompts smarter. They make failures visible—and controllable.

The Prompt Gover nor

Chapter 6: Iterative Prompting

The fantasy is that you craft one perfect prompt and the Al delivers exactly what you need. The redlity is that
your first prompt is ahypothesis. You test it, see where it breaks, and fix the spec.

The Iteration Loop

Write stllctured Evaluate aZtlinst intent Identify \3ak pillar Tighten 4)nstraint
prompt

- - — REPEAT UNTIL OUTPUT MATCHES SPEC - - -

Example: Newsletter Summary

ITERATION 1

Prompt: "Summarize this article for my newsletter."
Result: 400-word summary with generic insights—too long, too bland.
Diagnosis: Missing OUTPUT SHAPE for length, weak CONTEXT about audience.

ITERATION 2

Prompt: "Summarize in 3 bullet points for startup founders. Focus on actionabl e takeaways."
Result: Three bullets, but surface-level.
Diagnosis: TASK till too vague—what counts as "actionable"?

ITERATION 3 O

Prompt: "Summarize in 3 bullets. Each bullet: one thing a founder could implement this week. No
generic advice. If no implementable insights exist, say so."
Result: Three specific, actionable bullets. One flags an abstract section. Usable.

The skill isn't prompt cleverness. It's diagnosis. Three iterations taking two minutes total will outperform
twenty minutes of trying to write the "perfect” prompt upfront.

The Prompt Governor

End-to-End Example: From Vague to Governed

The following example shows what iterative prompting looks like when the output is intended for reuse or
automation—not just one-off drafting.

Initial Prompt (Unspecified)
Prompt: "Review this contract clause and tell me if there are any risks."

Result: A confident, high-level response with general legal commentary. It sounds plausible, but mixes factual
interpretation with assumptions.

Why thisisdangerous. The output reads authoritative. A non-lawyer could easily treat it as advice. Thisis not
just low quality—it's ungoverned.
Iteration 1: Structured But Still Weak

Prompt: "You are alegal expert. Review this contract clause and identify potential risks for our company."
Result: More focused, but still overconfident. The model invents intent and specul ates about enforceability.
Diagnosis: ROLE improved but vague. TASK still ambiguous. GUARDRAILS still missing.

Iteration 2: Governed Specification [J

"You are an in-house counsel at a md-size SaaS conpany.

Context: This clause is froma custoner agreenent under U S. |aw.

Task: ldentify potential liability or ambiguity explicitly present in the clause text.
Qutput: Bullet list with one sentence per item

Guardrails: Do not specul ate beyond the clause text. If a risk depends on m ssing
information, state the dependency explicitly. If no clear risks are present, say so."

Result: A short list identifying two concrete issues, each tied directly to the clause language. One item
explicitly states that enforceability depends on jurisdictional details not provided.

This output is now safe to reuse in a workflow with human review. It isno longer pretending to be authority—it
is producing structured input for judgment.

* Your first prompt is a hypothesis, not a solution

* Diagnose which pillar failed before changing wording

* |teration improves specifications, not models

 2-3 iterationsis normal; 4-5 means the task is too complex

» Governed prompts make uncertainty visible and reusable

— 14—

The Prompt Governor

Chapter 7. High-Leverage Prompt Patterns

Prompt patterns are reusable structural fixes for recurring failure modes. They are not magic formulas. They do
not make bad specifications good. They work only after you've diagnosed why the output failed.
Role Anchoring — Fixes Generic Output

Failure symptom: Output is safe, bland, non-committal, or refuses to take a position.
Pattern: "You are [specific expert]. You prioritize [specific value]. You are NOT ageneral assistant.”

Why it works: It forces the model out of default assistant mode and constrains perspective.

Constraint Stacking - Fixes Rambling

Failure symptom: Output is directionally correct but too long, unfocused, or poorly structured.
Pattern: Explicitly stack constraints on length, format, quantity, and exclusions.

Why it works: LLMs optimize for plausibility, not brevity. Multiple constraints reduce degrees of freedom.

Negative Specification - Fixes Unwanted Content

Failure symptom: The model keeps including things you explicitly don't want.
Pattern: "Do NOT [behavior]. Exclude [category]. Never [action].”

Why it works: Positive instructions describe what can happen. Negative specifications define hard boundaries.

Example Injection - Fixes Misaligned Tone/Format

Failure symptom: The model consistently misinterprets what "good" looks like.
Pattern: Provide 1-2 examples of desired output—or explicit anti-examples.

Why it works: Examples collapse ambiguity faster than abstract description.

Forced Structure — FixesBuried Answers

Failure symptom: The correct answer exists but is hidden inside long prose.
Pattern: Specify exact sections, headers, or a response skeleton.

Why it works: Structure forces prioritization and makes outputs predictable and reviewable.

Uncertainty Surfacing — Fixes Overconfidence

Failure symptom: Output sounds confident even when information isincomplete or inferred.

Pattern: "If unsure, say so explicitly. Flag assumptions. Distinguish facts from inferences.”

The Prompt Gover nor

Why it works: LLMsdo not self-correct. This pattern makes uncertainty visible.

Task Decomposition - Fixes Complex Task Confusion

Failure symptom: The prompt attempts to do too much and the output |oses coherence.

Pattern: Break the task into explicit, numbered sub-steps within the prompt.

Why it works: Large, implicit tasks overload the model's reasoning. Decomposition restores alignment.

Using Patterns Correctly

Patterns are composabl e, but diagnosis comes first. One prompt may use several patterns. No prompt should use
patterns blindly. When output fails, ask: What is the symptom? Which pillar is weak? Which pattern addresses
that failure mode?

Patterns don't fix thinking. They encode it.

The Prompt Governor

Chapter 8: Common Failure M odes

When Al output fails, it's amost aways because a pillar is missing or weak. Learn to trace symptoms back to
causes. Don't blame the model—diagnose the spec.

Failure Mode Diagnostic Table

SYMPTOM LIKELY CAUSE FIX

Vagueness Weak TASK / missing Add specifics and situational context
CONTEXT

Overconfidence Missing GUARDRAILS Add uncertainty flagging instructions

Hallucination No source constraints Restrict to provided documents only

Rambling Missing OUTPUT SHAPE Add explicit length/format constraints

Wrong detail level Weak CONTEXT Specify audience and depth

Off-topic drift Weak TASK Tighten scope, exclude adjacent topics

Generic output Missing CONTEXT/ROLE Add concrete context, strengthen role

When output fails, run through this table. Ask: Which symptom am | seeing? Which pillar is likely weak?
Fixing the wrong pillar wastes iterations. Accurate diagnosisis the skill that makes prompting fast.

—17—

The Prompt Gover nor

Chapter 9: Reducing Errorsand Hallucinations

CORE PRINCIPLE

Errors cannot be eliminated—only reduced. Y our job isto design prompts that surface
uncertainty, constrain invention, and make review efficient.

Strategiesfor Error Reduction

SURFACE ASSUMPTIONS

Guardrail: "Before answering, list the assumptions you're making. If any assumption is wrong,
your answer may not apply."

REQUEST CONFIDENCE SIGNALS

Guardrail: "For each claim, indicate whether it's based on (a) provided text, (b) general
knowledge, or (c) inference that may be wrong."

SEPARATE PROPOSAL FROM EXECUTION

Workflow: Ask for aplan or draft first. Review it, correct errors, then prompt for execution.

CONSTRAIN THE SOURCE

Guardrail: "Only use information from the attached document. If the answer isn't there, say 'Not
found in document.™

REQUEST CITATION

Guardrail: "For each factual claim, include a direct quote from the source. If no supporting quote
exists, omit the claim.”

DESIGN FOR EFFICIENT REVIEW

Output shape: "Present findings in a table with columns: Claim, Source, Confidence Level."

None of these strategies guarantee correctness. They shift the burden from "trust the Al" to "make verification
tractable." The goal is not to make the Al reliable. The goal isto make unreliability visible.

The Prompt Gover nor

BOTTOM LINE

If errors are unacceptable, you need human verification. Full stop. No prompt engineering changes
that.

The Prompt Gover nor

Chapter 10: Why Agents Fail Without Prompt
Discipline

CRITICAL WARNING

Agentic systems don't eliminate prompt problems—they multiply them. Every flaw in your
prompt specification compounds with each autonomous step.

An "agent" is not a smarter model. It isaloop: prompt — output — action — new prompt — repeat. The model
does not become more intelligent or more careful because it is running autonomously. Nothing about that loop
improves truthfulness, judgment, or accountability.

In a single prompt, a weak guardrail might produce one hallucination you catch. In an agent running twenty
steps, that same weakness creates twenty opportunities for erro—most of which you will never see until
damage is done.

Example Failures

SILENT DATA CORRUPTION

An agent researches competitors and updates a spreadsheet. The prompt lacks a constraint against
inventing data. On step fourteen, it fabricates arevenue figure. Y our sales team usesit in apitch.

HALLUCINATION PROPAGATION

An email-drafting agent extracts "key points' and then drafts a message. If the extraction step
hallucinates a claim, the final email presents that hallucination confidently to your client.

UNDEFINED OPERATIONS

An agent told to "clean up the CRM by removing duplicates" deletes records sharing an email
address but belonging to different people. Y ou lose customer data.

The failure mode isn't "the agent went rogue." It's mundane: the agent did exactly what poorly specified
promptstold it to do, at scale, without human checkpoints.

The Automation Gate

Before you turn a prompt into an agent, workflow, or autonomous loop, every condition below must be true:

m | can run thistask manually and get reliable, repeatable results
m All five pillars are explicit—not implied

m The output format is predictable and easy to review

m Uncertainty and assumptions are surfaced, not hidden
m There are human review or approval checkpoints

m Actions can be stopped, corrected, or reversed

m | know exactly what the agent is not allowed to do

If any box is unchecked, automation is premature.

KEY TAKEAWAYS
» Agents multiply prompt flaws; they do not fix them
» Missing guardrails become catastrophic at scale
* Checkpoints are mandatory, not optional

* If single prompts aren't reliable, don't build agents yet

The Prompt Gover nor

The Prompt Gover nor

Chapter 11: You Arethe Governor, Not the Al

ACCOUNTABILITY

The human is always accountable for outcomes. "The Al said so" is not a defense—legally,
professionally, or ethically.

When you use Al to produce work, you are responsible for that work. Your client doesn't have a contract with
OpenAl. Your employer didn't delegate authority to Claude. Y ou made the decision to use the tool. You own
the result.

A consultant uses Al to draft a market analysis. The analysis includes a fabricated statistic. The client makes a
decision based on that statistic. When it turns out to be wrong, the client doesn't sue the Al vendor—they sue
the consultant.

Real Risks

LEGAL EXPOSURE

Contracts you sign, advice you give, statements you publish—these carry liability regardless of
how they were produced.

REPUTATIONAL RISK

If your Al-assisted output iswrong, embarrassing, or harmful, the damage attaches to you, not to a
model.

OPERATIONAL RISK
Errors can cascade into corrupted data, missed deadlines, or broken customer relationships.

Governance is not passive. It's not enough to "use Al responsibly” in some vague sense. Governance means
review before action, verification before publication, and override when output is wrong.

Delegation is not abdication. You can delegate drafting, research, and synthesis to Al. You cannot delegate
judgment, accountability, or final authority.

THE PROFESSIONAL STANDARD

If you wouldn't sign your name to it without reading it, don't publishit, send it, or act on it.

The Prompt Gover nor

Chapter 12: How to Apply This Playbook

Start small. Add structure incrementally. Resist the urge to automate before you can specify. This playbook is a
foundation, not afinish line.

Implementation Path

STEP 1: SINGLE PROMPTS FIRST

Get reliable output from one real task before chaining tasks. Use the Universal Prompt Template
on work that actually matters. See where it breaks. Iterate.

STEP 2: ADD STRUCTURE WHEN OUTPUT FAILS

If asimple prompt works, don't complicate it. If it fails, diagnose with the Five Pillars and add the
missing constraint.

STEP 3: BUILD A PERSONAL PROMPT LIBRARY

When you find a prompt that works reliably for arecurring task, save it. Templates compound.
Don't solve the same problem twice.

STEP 4: RESIST PREMATURE AUTOMATION

The urge to "build an agent” is strong. But automation multiplies whatever you've
built—including flaws. Only automate what you can already do reliably with manual prompts.

What This Playbook Doesn't Cover

It doesn't make Al factually reliable—you still verify. It doesn't replace domain expertise—you still need to
know when output is wrong. It doesn't address model selection, fine-tuning, or APl architecture. Those are
different skills.

What comes next is evolution, not revolution. Models will improve, but the fundamentals won't change. Better
models still require clear specs. Probabilistic systems still require governance.

The Prompt Gover nor

Last Words

Al doesnot remove responsibility.

It concentratesit.

When something goes wrong, there is no model to blame, no vendor to point at, no abstraction to hide behind.
Thereis only the person who decided what to ask, what to accept, and what to act on.

That person isyou.

The difference between people who get leverage from Al and people who get burned by it isn't intelligence,
access, or tooling. It's discipline. Professionals specify clearly, verify relentlessly, and never confuse
plausibility with correctness.

Nothing in this playbook is about being clever. It's about being precise. Clear specs. Explicit constraints.
Review before action. Governance before automation.

The models will improve. Interfaces will change. Hype cycles will repeat. None of that changes the
fundamentals. Probabilistic systems will always require structure, and automation will aways magnify
whatever you put into it—good or bad.

YOUR PATH FORWARD

Start small. Pick one real task. Write a structured prompt. Evaluate the result. Fix what failed.
Repeat. That's the work. And now you know how to do it.

— 20—

The Prompt Gover nor

Appendix A: The Governor's Checklist

A One-Page Control System

This checklist is the operational core of this playbook. It applies regardless of model, tool, workflow, or
interface. Use it before you trust, publish, send, automate, or act on Al output.

1. Specification Check (Before You Prompt)

Do | know exactly what "done" looks like?

Could I hand this task to a competent human and get the same result?
Have | specified who the model should act as (ROLE)?

Have | provided only the relevant background (CONTEXT)?

Isthe task executable, not vague (TASK)?

Did | control format, length, and structure (OUTPUT SHAPE)?

Did | state what the model must not do (GUARDRAILS)?

2. Output Review (Before You Trust It)

m Does the output actually meet the spec | wrote?

m Did the model make assumptions| didn't intend?

m Are any claims stated as facts that might be guesses?

m If thisiswrong, do | know whereit's likely wrong?

m Could | explain this output—and its limits—to another human?

3. Hallucination Control

m Did | restrict the source of truth where needed?

m Did | ask the model to surface uncertainty or assumptions?

m Are citations, quotes, or references verifiable?

m Does any number, name, or claim require external confirmation?

4. Iteration Discipline

m When output was wrong, did | diagnose the pillar that failed?
m Did | tighten the spec instead of rephrasing vaguely?

m Did | stop iterating once the output met the spec?

m Am | keeping areusable version of this prompt if it works?

5. Automation Readiness (Before Agents)

The Prompt Gover nor

m Can | get reliable results from this task manually?
m Areall five pillars explicit—not implied?

m Are there human review checkpoints?

m Can | stop, correct, or reverse actions?

m Do | know what the agent is not allowed to do?

6. Accountability Reality Check

m Would | sign my name to this output?

m Would | send thisto aclient or stakeholder as-is?

m |f this causes harm, delay, or embarrassment, am | prepared to own it?
m |sjudgment still human, or did | quietly outsource it?

THE RULE THAT OVERRIDES ALL OTHERS

If you wouldn't approve it without Al, don't approve it with Al. Y ou are not here to trust the
model. Y ou are here to govern the system.

The Prompt Gover nor

Appendix B: Prompt Failure Diagnostic Sheet

A One-Page Failure Diagnosis Tool

Use this immediately when Al output is wrong, weak, or untrustworthy. Do not rephrase the prompt. Do not
change models. Diagnose first.

Step 1: Identify the Failure Symptom

m Sounds reasonable but says nothing specific
m Confident but likely wrong

m |nvents facts, sources, or details

m Toolong/ rambling

m Wrong level of detail

m Off-topic or adjacent to the task

m Refuses or hedges excessively

If none apply, your problemis not prompting.

Step 2: Map tothe Failed Pillar

SYMPTOM LIKELY CAUSE FIX

Vagueness Weak TASK / missing Add specifics and situational context
CONTEXT

Overconfidence Missing GUARDRAILS Add uncertainty flagging instructions

Hallucination No source constraints Restrict to provided documents only

Rambling Missing OUTPUT SHAPE Add explicit length/format constraints

Wrong detail level Weak CONTEXT Specify audience and depth

Off-topic drift Weak TASK Tighten scope, exclude adjacent topics

Generic output Missing CONTEXT/ROLE Add concrete context, strengthen role

If you cannot name the failed pillar, you are guessing.

Step 3: Apply the Correct Fix

ROLE failed -

27—

m Specify expertise and perspective

m Explicitly state what the model is not
CONTEXT failed -

m Add only information required for correctness

m Removeirrelevant background
TASK failed -

m Define what "done" means

m Replace vague verbs with executable actions
OUTPUT SHAPE failed -

m Constrain format, length, and structure

m Force scannability (bullets, tables, limits)
GUARDRAILSfailed -

m Prohibit speculation and invention
®m Require uncertainty to be stated
m Restrict allowed sources

Bad output is not an Al failure. It is a specification failure.

The Prompt Governor

The Prompt Gover nor

Appendix C: Automation Readiness Gate

A Hard Siop Before Agents, Workflows, or Autonomy

Before turning any prompt into an agent, a workflow, a loop, a background process, or an autonomous system,
every condition below must be true.

1. Manual Reliability Check

m | can run thistask manually using a single prompt
m | get consistent, repeatable results

m The output no longer surprises me

m | know what "good" looks like before | seeit

2. Specification Completeness

m ROLE isexplicit and constrained

m CONTEXT issufficient and not bloated

m TASK isexecutable and unambiguous

m OUTPUT SHAPE is predictable and reviewable

m GUARDRAILS prevent speculation, invention, or overreach

3. Output Reviewability

m The output can be reviewed quickly by a human
m Errors are easy to spot

m Assumptions are surfaced, not hidden

m The format supports comparison and auditing

4. Uncertainty Visibility

m The system explicitly flags missing information

m The system distinguishes facts from inferences

m The system can say "unknown" or "insufficient data"

m The system does not force completion when confidenceislow

5. Control & Reversibility

m Actions can be paused or stopped

m Outputs can be corrected before execution
m Changes can be reversed

m Thereisadefined falure state

The Prompt Gover nor

6. Human Authority Checkpoints

m A human approves before irreversible actions
m A human can override the system
m Responsibility isclearly assigned
m No step relieson "the Al decided"

7. Boundary Definition

m | know exactly what the system is allowed to do

m | know exactly what the system is not allowed to do
m Edge cases are explicitly excluded

m Scope creep istechnically blocked, not discouraged

PASS / FAIL RULE

All boxes checked — Automation may proceed
Any box unchecked — Automation is prohibited

There are no partial passes.

If a single prompt still surprises you, an agent will surprise you faster and more expensively.

Govern first. Automate last.

The Prompt Gover nor

Appendix D: Universal Prompt Template

A Canonical Prompt Specification Template

This template exists to prevent omission. Most prompt failures are not caused by bad wording. They are caused
by missing components. This template maps directly to the Five Pillars and treats prompts as specifications, not
conversations.

Useit for:

* Single prompts

* Reusable templates

* High-risk tasks

» Workflows and pre-automation checks

ROLE

Who the model is and how it should behave

You are [specific role].
You prioritize [key characteristics or val ues].
You are NOT [rol es, behaviors, or perspectives to avoid].

CONTEXT

Only the information required for correct execution

Rel evant background i nfornation:
[l ncl ude what matters.]
[Excl ude what doesn't.]

TASK

The executable objective

Your task is to [precise action].
"Done" neans:
[ear success criteria]

OUTPUT

Exact format and structure

— 31—

The Prompt Gover nor

Produce the output as foll ows:
e Format: [specify]

* Length: [specify]

e Structure: [specify]

GUARDRAILS

Constraints, exclusions, and safety rules

The nodel nust:

[Requi red behavi ors]

The nodel nust NOT:

[Prohi bited behavi ors]

If information is mssing or unclear:

e State that explicitly rather than guessing.

How to Use This Template

* For quick tasks: compress sections

* For complex or high-risk tasks: expand them

* For reusable work: save the final version

* Do not skip sections unless you understand the tradeoff

Templates do not make prompts smarter. They make failures visible—and controllable.

You arenot heretotrust themodel. You are hereto govern the system.

